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ABSTRACT: In recent years, the amount of data produced in the field of ART has increased exponentially. The diversity of data is large,

ranging from videos to tabular data. At the same time, artificial intelligence (AI) is progressively used in medical practice and may become

a promising tool to improve success rates with ART. AI models may compensate for the lack of objectivity in several critical procedures in

fertility clinics, especially embryo and sperm assessments. Various models have been developed, and even though several of them show

promising performance, there are still many challenges to overcome. In this review, we present recent research on AI in the context of

ART. We discuss the strengths and weaknesses of the presented methods, especially regarding clinical relevance. We also address the pit-

falls hampering successful use of AI in the clinic and discuss future possibilities and important aspects to make AI truly useful for ART.

Key words: artificial intelligence / machine learning / ART / embryology / semen analysis / embryo / spermatozoa / fertility / infertility /

algorithm

Introduction

The number of treatments with ART is steadily increasing in Europe,

and in 2016, over 900 000 treatment cycles were performed (Wyns

et al., 2020). Even though there have been gradual improvements in

the success rate, only one-third of the ART cycles result in a live birth,

and only 5% of the aspirated oocytes have the competence to develop

into a child (Lemmen et al., 2016; Wyns et al., 2020). This implies that

there is potential for improvement in the crucial steps in ART treat-

ments, such as the selection of embryos for transfer and the selection

of spermatozoa for ICSI. Improving the ability to select a single em-

bryo with the highest implantation potential could increase live birth

rates and time to pregnancy, as well as minimise the chance of multi-

ple pregnancies due to the transfer of multiple embryos. Likewise, a

more reliable method for sperm selection may increase the success

rates of the ICSI procedure. Furthermore, the disputable clinical value

of semen analysis in male fertility investigation and for ART justifies a

need for improving the methods of sperm evaluation both for diagnos-

tic purposes and for decisions regarding the fertilisation method of the

ART treatment.

Video and image analysis constitutes a major part of ART, and

artificial intelligence (AI) methods are especially suited for image

classification. In addition to videos and images, AI can be used to ana-

lyse other types of data, like text or tabular data. As in other parts of

medicine, AI methods have been introduced in the field of ART. They

have the advantage of objectivity and have the potential to improve

ART, which in some parts are based on subjective assessments.

In this review, we provide an overview of studies found in Embase

(Ovid), where AI methods have been applied in human reproductive

medicine with an emphasis on ART. Furthermore, we discuss how to

avoid the pitfalls and describe the potential use of AI in clinical practice

in the future.

Current challenges in ART

Highly trained personnel in fertility clinics are faced with important and

difficult decisions every day, such as deciding which fertilisation method

to use, which spermatozoon to select for ICSI, and which embryo to

transfer to the uterus. One of the major challenges in the subjective

assessments of embryos is the high intra- and inter-operator variability

which exists in the evaluation of morphology and morphokinetics

(Paternot et al., 2009; Sundvall et al., 2013; Storr et al., 2017). With

time-lapse technology, embryos can be monitored continuously, and

VC The Author(s) 2021. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved.
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the complete process of embryo development is more precisely

assessed. However, there is no evidence that the use of time-lapse

technology has improved live birth rates after ART (Armstrong et al.,

2019).

Whilst sperm morphology has no definite impact on the outcome

after ART, sperm concentration and sperm motility are normally

assessed for deciding whether IVF or ICSI should be used as the fertil-

isation method (Høst et al., 2001). Strikingly, ICSI is increasingly used

irrespective of a male factor infertility diagnosis (Boulet et al., 2015;

Vander Borght and Wyns, 2018). Among the cycles reported in

Europe in 2016, 28% were IVF and 72% ICSI (Wyns et al., 2020), al-

though the male factor accounts for only 20–30% of the diagnoses of

the infertile couples. This is of increasing concern since performing

ICSI instead of IVF in couples where the male partner has a defined

normal semen sample does not increase the live birth rate (Dang

et al., 2021).

Early in the fertility investigation, a standard semen analysis accord-

ing to WHO guidelines (WHO, 2010) is usually performed. This analy-

sis might reveal information essential for deciding whether ART should

be recommended as a treatment. The method is time-consuming and

prone to limited reproducibility and high inter-personnel variation

(Tomlinson, 2016). Several computer-aided sperm analyses (CASA)

systems are available, but they are still most suitable for assessing sper-

matozoa separated from seminal plasma, and their reliability is debat-

able (Mortimer et al., 2015).

When selecting spermatozoa to inject for ICSI, the procedure is

performed by visually evaluating the morphology and motility of sper-

matozoa with an ICSI microscope. This selection process is subjective,

based on a qualitative evaluation of the operator, and not on objective

sperm characteristics.

The potential of AI in ART

New technologies, such as better cameras and data capturing systems,

are rapidly becoming an integrated part of the fertility clinic and result

in a vast amount of stored data, including patient data, embryo time-

lapse videos and sperm videos. In recent years, AI has proved to be a

valuable tool in medicine by analysing large amounts of data (Hosny

et al., 2018; Yang and Bang, 2019). A typical approach for using AI

models in ART can be seen in Fig. 1. In particular, machine learning

(ML), a subfield within AI, refers to algorithms that automatically learn

from data without being explicitly programmed.

An overview of common AI methods used in ART is given in

Fig. 2. Supervised and unsupervised learning are subgroups of ML.

Supervised learning refers to methods that learn from datasets

where the answer (the label) is given for each observation. An ob-

servation within a dataset could be data from an ART cycle, like

an embryo image, and the label regarding whether the embryo

resulted in a pregnancy or not. The algorithm will learn from the

dataset, and the resulting ML model can be used to predict preg-

nancy or not for data from another ART cycle with unknown

labels. Unsupervised learning refers to methods that search for

patterns in unlabelled data, for example, automatically grouping

blastocyst images based on visual features automatically deter-

mined by the algorithm that may correlate with morphological

characteristics. Such visual features can be completely different

from what human observers are able to recognise or may see as

relevant. Artificial neural networks (ANNs) are a class of super-

vised learning, and deep neural networks (DNNs), or deep learn-

ing (DL), refers to especially large and complex ANNs. DL

methods have the ability to learn from unstructured data such as

images or text.

Details of studies discussed in this review can be found in Table I

for embryo related articles and in Table II for sperm related articles.

AI in embryo assessment

Most articles about embryo assessment and selection for transfer

address the prediction of embryo quality, grading and ranking, and

compare the performance of the AI model with an evaluation done by

embryologists (Dirvanauskas et al., 2019; Kanakasabapathy et al., 2019;

Khosravi et al., 2019; Raudonis et al., 2019; Fukunaga et al., 2020;

Bormann et al., 2020a, 2020b; Rad et al., 2020; Zhao et al., 2021). To

make an automatic grading system, the model must learn to locate the

embryo in the dish, segment important features, and then assess and

grade the embryo from manually annotated data. Manual annotations

provided by embryologists are time-consuming to create, leading to

small and sparsely annotated datasets. Therefore, most studies of AI

methods and resulting models in ART can be considered preliminary.

With the development of time-lapse technology, access to image and

video data has become more available, making it possible to utilise this

data to build new AI models. Dirvanauskas et al. (2019) predicted em-

bryo development stages by time-lapse videos using features extracted

from a Convolutional Neural Network (CNN). In one study, an auto-

mated system was established to detect pronuclei in time-lapse images

with the precision almost equivalent to highly skilled embryologists

(Fukunaga et al., 2020). In another study, the zona pellucida (ZP) and

the cytoplasm and pronucleus in zygotes were detected by developing

an algorithm using DL image segmentation technology (Zhao et al.,

2021). One group reported the possibility of identifying human em-

bryo development stages (Raudonis et al., 2019). First, the location of

an embryo in the image was detected by employing a visual image

feature-based classifier. Then, a multi-class prediction model was de-

veloped to predict the cell stage of the embryo using DL. Others

reported a system to detect and assess blastocyst quality by using DL

to detect the ZP area (Rad et al., 2018).

Data augmentation techniques, like cropping and resizing which are

usually used to increase dataset size or variation, were applied to em-

bryo assessment to compensate for the lack of data for training the

DL models (Rad et al., 2020). Augmented images were proven to be

effective in filling the generalisation gap when available data is limited.

Experimental results confirmed that the proposed models were capa-

ble of segmenting trophectoderm (TE) regions.

Inner cell mass (ICM) has been assessed by a computer-based and

semi-automatic grading of human blastocysts (Santos Filho et al.,

2012). A CNN was able to predict ICM and TE grades from a single

frame (a frame is an image extracted from a video), and a recurrent

neural network was applied on top to incorporate temporal informa-

tion of the expanding blastocysts from multiple frames. Additionally,

when evaluating implantation rates for embryos grouped by morphol-

ogy grades, a CNN provided a slightly higher correlation between pre-

dicted embryo quality and implantation ability than did human

2430 Riegler et al.
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embryologists (Kragh et al., 2019). The use of a CNN trained to as-

sess an embryo’s implantation potential directly, when using euploid

embryos capable of implantation, outperformed 15 trained embryolo-

gists (Bormann et al., 2020a).

In a retrospective analysis of time-lapse videos and clinical outcomes

of 10 000 embryos from eight different IVF clinics across four different

countries, a DL model was built with a high level of predictability re-

garding the embryo implantation likelihood (Tran et al., 2019). A pro-

spective double-blinded study using retrospective data addressed the

variability between embryologists to select embryos for biopsy and

cryopreservation (Bormann et al., 2020b). It was found that the appli-

cation of a DNN could improve the reliability and perform with high

consistency during the process of embryo selection, thereby potentially

improving outcomes.

A DL-based system called Life Whisperer showed a sensitivity of

70% for viable embryos while maintaining a specificity of 61% for

non-viable embryos across three independent blind test sets from

different clinics (Ver Milyea et al., 2020). The model demonstrated

a 25% increase over embryologists for accuracy, and the ranking

comparison demonstrated an improvement of 42% over embryolo-

gists. One embryo ranking model increased the success of ART treat-

ments in oocyte donation programs (Alegre et al., 2021). The

Figure 1. Development of a machine learning model. To implement a machine learning model at the clinic, at first a clinically relevant aim

should be defined, and data must be collected in line with this aim. The collected data should then be stored in an appropriate format so that the ma-

chine learning algorithm can process it. The stored data should be split into a training, validation and testing partitions to ensure a robust and thor-

ough evaluation. In the optimal case the testing dataset is provided from an independent source (different clinic, new patients). These parts are then

be used to build a model that is in line with the medical goal. After the model is built, it should be thoroughly evaluated to verify its generalisability

and to avoid unintended biases. Once the model has been thoroughly tested, it can be implemented in the clinic. The model should be continuously

monitored and tested while in production and as the circumstances required are updated.

Figure 2. Subfields defined by artificial intelligence.

Machine learning is the most relevant field for the current develop-

ment of artificial intelligence system for the clinic. Machine learning

can further be split into traditional machine learning methods and

deep learning. Note that the subfields are not mutually exclusive;

most of them rely heavily on machine learning, like computer vision

and language processing.

Artificial intelligence in the fertility clinic 2431
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Table I Overviewof studies usingAI-methods in embryo assessment and selection, and for prediction before treatment.

Year Study Aim of the study Outcome Dataset AI methods Summary answer

2017 Milewski et al. Investigating the poten-

tial of using data on em-

bryo implantation and

morphokinetic parame-

ters in predictive AI

models.

Probability of implanta-

tion, clinical pregnancy.

A dataset of time-lapse

recordings of 610 em-

bryos from 514 treat-

ment cycles,

morphokinetic parame-

ters, data on implanta-

tion, women’s age. It is

unclear if the dataset

was prospectively

collected.

Traditional ML (Principal

Component Analysis)

and Deep Learning

(Multilayer Perceptron)

Morphokinetic parame-

ters from the time-lapse

videos used to discrimi-

nate between implanted

and nonimplanted

achieved an AUC of

0.71.

2018 Rad et al. Automatic segmentation

of the Zona Pellucida.

Segmentation of Zona

Pellucida.

A retrospective dataset

consisting of images of

blastocyst.

Deep Learning The AI model was able

to segment the Zona

Pellucida with an IoU

score of 0.78.

2019 Tran et al. Predict the probability of

pregnancy with foetal

heart from time-lapse

videos.

Foetal heart pregnancy

or not.

A retrospective dataset

containing time-lapse

videos of 10,638 em-

bryos cultured to blasto-

cyst stage from 1,648

patients across 8 IVF

clinics. No manual as-

sessment of videos.

Deep Learning (CNN) AI model (IVY) was able

to predict the probability

of fetal heart pregnancy

based on timelapse vid-

eos with a mean AUC of

0.93.

2019 Dirvanauskas et al. Predict embryo develop-

ment stage from time-

lapse videos.

Embryo development

stage (1-cell, 2-cell,

4-cell, 8-cell,

no embryo).

A retrospective dataset

containing 7,002 time-

lapse images from 10

embryos.

Deep learning (CNN)

and traditional ML (K

Nearest Neighbour,

Cecoc, Decision

Trees, Naive Bayes

Classifier)

The AI model for em-

bryo classification

achieved an accuracy of

97.62%.

2019 Kanakasabapathy et al. Develop inexpensive

platforms for use in a

stand-alone optical sys-

tem and a smartphone-

based optical system for

automated grading of

embryos based on

images.

Classification of embryos

based on cell

morphology.

A retrospective dataset

containing 160 embryo

images from a stand-

alone optical system and

385 embryo images

from a smartphone-

based optical system.

Models were pretrained

on other high-quality

embryo data.

Deep Learning (CNN) Two systems were de-

veloped for grading em-

bryos (stand-alone

imaging system and

smartphone optical sys-

tem). Both systems

achieve an accuracy

above 90%.

2019 Khosravi et al. Develop an AI model for

accurate prediction of

blastocyst quality and se-

lection for single embryo

for transfer.

Classification of embryos

into poor-quality and

good-quality.

A retrospective dataset

containing 12,001 time-

lapse images at 110 hr

post-insemination from

10,148 embryos. Manual

classification by embryol-

ogists. Age of patient

was included in the

model for 2,182 em-

bryos. Two external

datasets were used for

validation.

Deep Learning (CNN) AI model (STORK) pre-

dicted blastocyst quality

with an AUC above

0.98. The model

achieved an AUC of

0.90 and 0.76 respec-

tively on two datasets

from other clinics.

2019 Kragh et al. Develop AI method for

automatic grading of

blastocyst morphological

appearance based on

time-lapse images.

Inner cell mass and tro-

phectoderm grading, im-

plantation rate.

A dataset containing

time-lapse videos of

4,483 embryos (both

IVF and ICSI treatment).

All images were graded

by embryologists.

Implantation information

for 287 embryos. It is

unclear if the dataset

was prospectively

collected.

Deep Learning (CNN,

Recurrent Neural

Network)

AI model achieved an

accuracy of 65% for in-

ner cell mass grading and

70% for trophectoderm

grading. Prediction of im-

plantation achieved an

AUC of 0.66.

(continued)

2432 Riegler et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
u
m

re
p
/a

rtic
le

/3
6
/9

/2
4
2
9
/6

3
3
0
6
6
2
 b

y
 N

ic
o
la

i H
o
ls

t o
n
 1

9
 A

u
g
u
s
t 2

0
2
1



.............................................................................................................................................................................................................................

Table I Continued

Year Study Aim of the study Outcome Dataset AI methods Summary answer

2019 Raudonis et al. Automatically detect hu-

man embryo develop-

ment stages during

incubation.

Detect embryo in an im-

age and classify the em-

bryo development stage

(1-cell, 2-cell, 3-cell,

4-cell, > 4-cell).

A dataset containing

images of early-stage

embryo development

from an ESCO Miri TL

incubator system. It is

unclear if the dataset

was prospectively

collected.

Deep Learning (CNN) Two AI models were

considered, both

achieved a stage classifi-

cation accuracy above

92%. The most difficult

stage to classify was

3-cell.

2019 Qiu et al. Prediction of a clinical

model for estimating the

cumulative live birth

chance of the first com-

plete IVF cycle using pre-

treatment variables in-

cluding BMI and AMH.

Cumulative live birth

chance before IVF.

A retrospective dataset

containing age, AMH,

BMI, duration of infertil-

ity, previous live birth,

previous miscarriage,

previous abortion, and

type of infertility.

Traditional ML (Logistic

Regression, Random

Forest, XGBoost,

Support Vector

Machine)

Four machine learning

models were tested, of

which XGBoost

achieved the best score

with an AUC of 0.73.

The results indicate that

BMI and AMH have a

significant impact on live

birth.

2019 Vogiatzi et al. Predict live birth from

embryo variables by in-

cluding parameters that

exert a meaningful effect

on live birth following as-

sisted reproduction.

Live birth or not. 12 input features: Age

(female), Age at menar-

che, Difficulty during ET,

Endometrium thickness

prior to OR, ET/2PN,

TQE D3, TQE D3/2PN,

Total gonadotropins,

Age group, Dyspareunia,

Fresh or frozen cycle,

Menarche > 12 years.

The dataset was col-

lected retrospectively.

Deep Learning

(Multilayer Perceptron)

A multilayer perceptron

using the 12 input fea-

tures achieved a sensitiv-

ity of 0.71 and a

specificity of 0.70 for

predicting live birth.

2020 Bori et al. Describe novel embryo

features for implantation

potential prediction that

may be used as input

data in AI models.

Prediction of implanta-

tion potential.

A retrospective dataset

containing time-lapse

images from 637 em-

bryos (ICSI-cycles with-

out PGT, single fresh

embryo transfer),

Implantation rate based

on foetal heartbeat ultra-

sound after eight weeks.

Oocyte donation

programme.

Deep Learning

(Multilayer Perceptron)

Two novel embryo fea-

tures with significantly

different values in

implanted and nonim-

planted embryos were

identified. Novel embryo

features, in addition to

conventional morphoki-

netic parameters, can

improve predictive AI

models.

2020 Bormann et al. (a) Evaluation of AI models

for embryo selection

based on images.

Embryo quality and im-

plantation potential.

A retrospective dataset

containing single time-

point images at 113 h

post-insemination for

742 embryos from 97

patients.

Deep Learning (CNN) Two AI models were

evaluated. One selected

the highest quality em-

bryo with 90% accuracy,

and the other was able

to assess implantation

potential better than

trained embryologists

from different fertility

centres.

2020 Bormann et al. (b) Evaluate AI models for

embryo quality scoring

and assessment of bi-

opsy or cryopreserva-

tion of blastocysts,

compared to decisions

by trained

embryologists.

Morphological quality on

a 1–5 scale.

For embryo scoring,

images from 3469 em-

bryos. 748 at 70 h post-

insemination and 742

images at 113 h post-in-

semination. For biopsy

and cryopreservation as-

sessment, 56 blastocysts

images at 113 h post-in-

semination. All images

were evaluated by

Deep Learning (CNN) The AI models showed

less variability in embryo

grading than embryolo-

gists and outperformed

the embryologists in

selecting blastocyst bi-

opsy and

cryopreservation.

(continued)
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Table I Continued

Year Study Aim of the study Outcome Dataset AI methods Summary answer

trained embryologists.

Both datasets were ret-

rospectively collected.

2020 Chavez-Badiola et al. (a) Evaluate AI model per-

formance for prediction

of ploidy and implanta-

tion compared to

trained embryologists.

Embryo ranking, embryo

ploidy.

A retrospective dataset

containing single time-

point images from 840

embryos at day 5 or 6

after fertilization by ICSI.

Ploidy, hCG results, or

both were known.

Deep Learning

(Multilayer Perceptron)

An AI model (ERICA)

was able to identify and

rank blastocysts with the

best potential from one

image with higher accu-

racy than embryologists.

2020 Chavez-Badiola et al. (b) Predict pregnancy test

results after embryo

transfer.

Successful pregnancy or

not.

A retrospective dataset

containing embryo

images and patient age.

Traditional ML

(Probabilistic Bayesian,

Support Vector

Machine, Decision

Trees, Random Forest)

and Deep Learning

(Multilayer Perceptron)

Several AI models were

tested, of which the sup-

port vector machine

achieved the best result

across three datasets.

2020 Fukunaga et al. Automatic pronuclei

counting using deep

learning.

Number of pronuclei. A dataset containing 900

time-lapse images of 300

embryos up to 20 h

post-insemination. 70

images of each embryo.

Manual assessment and

annotation of pronuclei.

It is unclear if the dataset

was prospectively

collected.

Deep Learning (CNN) The AI model was able

to count pronuclei with

a sensitivity of 99% for

0PN, 82% for 1PN, and

99% for 2PN. The sys-

tem performed similarly

to that of trained human

experts.

2020 Rad et al. Automatic trophecto-

derm segmentation in

human embryo using

deep learning.

Trophectoderm

segmentation.

A retrospective dataset

containing images of

day-5 human embryo.

Deep Learning (CNN,

Generative Adversarial

Networks)

An AI model was used

to segment human em-

bryos. The model

achieved an IoU score of

76.71.

2020 Raef et al. Predict implantation out-

come after embryo

transfer cycle.

Implantation rate.

Positive or negative

beta-HCG.

A dataset containing 82

features (patient-related

data, female and male

pathology, semen analy-

sis, lab tests, oocyte and

embryo data and PRP)

Attributes related to im-

plantation arranged in

two groups (N¼ 82): 1)

patient-related features

(N¼ 59) and 2) ART cy-

cle features (N¼ 23). It

is unclear if the dataset

was prospectively

collected.

Traditional ML (Naive

Bayes Classifier, Support

Vector Machine,

Random Forest, K

Nearest Neighbour,

Decision Trees) and

Deep Learning

(Multilayer Perceptron)

Six AI models were

tested, where the ran-

dom forest algorithm

achieved the best result

with an accuracy of

90.4% and an AUC of

93.7%.

2020 Ver Milyea et al. Predict embryo viability

using images captured by

optical light microscopy.

Implantation rate—foe-

tal heartbeat.

A retrospective dataset

containing light micros-

copy images of blasto-

cysts, clinical outcome.

Deep Learning

(Convolutional Neural

Network)

An AI model (Life

Whisperer) was tested

on three independent

testing datasets, where it

achieved a 70.1% sensi-

tivity for viable embryos

and a specificity of

60.5% for non-viable

embryos.

2020 Goyal et al. Predict live birth before

IVF treatment.

Live birth or not. A retrospective dataset

containing 141,160 pa-

tient records,

Deep Learning

(Multilayer Perceptron)

Several machine learning

models were evaluated,

of which the multilayer

(continued)

2434 Riegler et al.
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multicentre nature of the above study supported its applicability at dif-

ferent clinics, standardising the interpretation of embryo development.

Embryo assessment, ranking, and selection are procedures nor-

mally based on evaluations at different time points during embryo

development and in several focal planes to get a view of the whole

embryo. There are numerous studies where only static images, usu-

ally in one single focal plane, are used for the AI analysis, which do

not mirror the clinical practice (Rad et al., 2018; Kanakasabapathy

et al., 2019; Khosravi et al., 2019; Bormann et al., 2020a, 2020b;

Chavez-Badiola et al., 2020a; Chavez-Badiola et al., 2020b; Bori

et al., 2021). In these models, well-curated, high-quality data is cru-

cial. For example, non-selection of a large number of images repre-

sentative of the diversity, inconsistent image treatment or inaccurate

labelling of images can lead to poor performing models (Tsipras

et al., 2020). Models involving time-lapse videos might also raise

problems since the definition of the important morphokinetic

markers may vary between different laboratories and still requires

an automated and unbiased process (Milewski et al., 2017;

Dirvanauskas et al., 2019; Tran et al., 2019; Bori et al., 2020; Alegre

et al., 2021).

AI methods should incorporate patient data that may impact the

outcome, such as maternal age. A framework (STORK) based on a

large collection of human embryo time-lapse images used a CNN to

automatically predict blastocyst quality depending on patient age

(Khosravi et al., 2019). Milewski et al. (2017) extracted several time

points and specific relative cleavage times together with fragmentation

levels, presence of multinucleation, evenness of blastomeres and

woman’s age. An ANN was trained to predict embryo implantation

from the extracted features. Another study that included 82 features

of patient data found that follicle stimulating hormone/human meno-

pausal gonadotropin dosage was the strongest predictor of embryo

implantation (Raef et al., 2020).

.............................................................................................................................................................................................................................

Table I Continued

Year Study Aim of the study Outcome Dataset AI methods Summary answer

anonymized register

data collected from the

year 2010–2016

obtained from the

Human Fertilisation &

Embryology Authority.

perceptron performed

best with an F1-Score of

72.94%.

2021 Alegre et al. Evaluate and test an au-

tomatic software for em-

bryo evaluation and

selection (Dana).

Embryo implantation

potential.

A retrospective dataset

containing time-lapse

images and patient char-

acteristics from oocyte

donation program.

Phase 1: 1,676 embryos

from 955 couples. Phase

2: 996 embryos from

249 cycles (multiple

centres). Phase 3 147

embryos from 108

patients.

Deep Learning (CNN) Increased success of IVF

treatment was found

with the assistance of au-

tomated embryo ranking

by Dana. The creation of

a data cloud can improve

the system further.

2021 Bori et al. Develop an AI model for

prediction of live birth

based on blastocyst

morphology and proteo-

mic profile of culture

media.

Prediction of live birth. A retrospective dataset

containing single time

point images at 111 hr

þ/- 1.5 hr from 212

patients. 186 embryos

after exclusions (131

non PGT from oocyte

donation programme, 55

PDG with proteomic

profile.

Deep Learning

(Multilayer Perceptron)

Three AI models using

both morphological and

proteomic variables. The

best model predicted

live birth with an AUC of

1.0.

2021 Zhao et al. Automatic segmentation

of day one embryos in

zona pellucida (ZP), cy-

toplasm, and pronucleus

(PN).

Cytoplasm, ZP and PN

segments.

A dataset containing

images of day-one em-

bryos (zygotes). It is

unclear if the dataset

was prospectively

collected.

Deep Learning (CNN,

Generative Adversarial

Networks)

The AI model achieved a

precision of 97% when

segmenting the cyto-

plasm, 80% for the zona

pellucida, and 84% for

the pronucleus.

AI, Artificial intelligence; CNN, Convolutional neural network; AUC, Area under the curve; IVF, In vitro fertilization; ICSI, Intracytoplasmic sperm injection; ZP, Zona pellucida; PN,

Pronucleus, PGT, Preimplantation genetic testing; AMH, Anti-Mullerian hormone; BMI, body mass index.

Artificial intelligence in the fertility clinic 2435
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Table II Overview of studies usingAI-methods in semen analysis and selection of sperm for ICSI.

Year Study Aim of study Outcome Dataset AI Methods Summary answer

2014 Chang et al. Improve AI models

for detection of hu-

man sperm head

characteristics in-

cluding, acrosome

and nucleus.

Sperm morphology A prospective data-

set containing 20

images with a total

of 210 stained sperm

cells. Sperm cell

details were manu-

ally classified and an-

notated in the

dataset.

Traditional ML

(Clustering)

Models showed 80%

overlap with manual

classification and

more precise sperm

head detection and

segmentation than

previously described

models.

2017 Chang et al. Explore AI modes to

classify sperm head

morphology into five

classes (normal, ta-

pered, pyriform,

small, amorphous)

and introduce a new

dataset.

Sperm morphology A retrospective

dataset containing

images of 1,854

stained sperm heads

from six semen

smears (SCIAN

MorphoSpermGS).

Sperm head shape

was manually classi-

fied and annotated in

the dataset.

432 The best model was

able to obtain 49%

correct classification

of head shape into

the five classes.

2017 Shaker et al. Explore Dictionary

Learning technique

for classification of

sperm head shapes

into four classes

(normal, tapered

pyriform and amor-

phous), and intro-

duce a new dataset.

Sperm morphology Two retrospective

datasets. 216 images

of stained sperm

heads (HuSHeM

dataset). Sperm

head shape was

manually classified

and annotated in the

dataset. 1133 images

from the SCIAN-

MorphoSpermGS

dataset.

Traditional ML

(Dictionary Learning)

Use of Dictionary

Learning was more

effective for sperm

head classification

than previously pub-

lished shape-based

features.

2017 Goodson et al. Development of AI

model for classifica-

tion of sperm motil-

ity patterns during

invitro capacitation.

Sperm motility CASA tracks of

2,817 washed sperm

cells from 18 sub-

jects. All tacks were

manually classified as

progressive, interme-

diate, hyperacti-

vated, slow, weakly

motile. It is unclear if

the dataset was pro-

spectively collected.

Traditional ML

(Support Vector

Machine, Decision

Tree)

A web-based pro-

gram, CASAnova,

was developed. This

program classifies

sperm motility pat-

terns into one of five

classes with an over-

all accuracy of

89.9%.

2019 Agarwal et al. Evaluate the perfor-

mance of an auto-

mated AI system

(LensHook) to mea-

sure sperm concen-

tration and sperm

motility.

Sperm concentration

and sperm motility

A prospective data-

set containing images

and video from 135

semen samples.

No information

available

Concentration and

motility analysed by

LensHook were

comparable to man-

ual assessment.

2019 Hicks et al. Predict sperm motil-

ity from videos and

introduce a new

dataset.

Sperm motility A retrospective

dataset containing

videos of live sperm

in untreated samples

from 85 subjects

(VISEM). Semen

analysis was manually

evaluated according

to WHO 2010.

Deep Learning

(CNN)

Deep learning

showed potential for

rapid and consistent

prediction of sperm

motility categories

(WHO 2010) based

on videos of live,

untreated sperm

samples.

(continued)

2436 Riegler et al.
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Table II Continued

Year Study Aim of study Outcome Dataset AI Methods Summary answer

2019 Riordon et al. Automatic assess-

ment for classification

of sperm head mor-

phology into five clas-

ses (normal, tapered,

pyriform, small, and

amorphous).

Sperm morphology Retrospective images

from HuSHeM data-

set and 1,132 images

from SCIAN dataset.

Deep learning

(CNN)

Deep learning can

classify sperm head

morphology with

higher accuracy than

previously published

AI methods used for

the same datasets.

2019 Javadi and

Mirroshandel

Automatic assess-

ment of sperm mor-

phology in unfixed

cells and introduce a

new dataset.

Sperm morphology 1,540 retrospective

grey scale images of

unfixed sperm cells

from 235 subjects

(MHSMA dataset).

Sperm cells were

manually classified as

normal or abnormal,

and acrosome, head,

vacuole, tail, and

neck were

annotated.

Deep learning

(CNN)

The method is able

to classify sperm in

real-time, but accu-

racy needs to be

improved.

2019 McCallum et al. Automatic method

for ranking sperm

cells based on DNA

quality enabling

sperm selection for

ICSI.

Sperm DNA

integrity

1,064 images of

stained sperm cells

with known DNA in-

tegrity from 6 sub-

jects. It is unclear if

the dataset was pro-

spectively collected.

Deep learning

(CNN)

Correlation between

cell image and DNA

integrity was found,

and the model was

able to predict the

DNA integrity of

sperm cells in a rapid

manner.

2019 Movahed et al. Automatic segmen-

tation of external

(head, mid piece,

and tail) and internal

parts (acrosome and

nucleus) of the

sperm.

Sperm morphology A retrospective

dataset containing 20

images of stained

sperm cells. Sperm

parts were manually

annotated.

Deep learning

(CNN) and tradi-

tional ML (Support

Vector Machine, K-

nearest neighbour,

Ensemble Method)

The methods were

better at segmenting

the head, acrosome,

and nucleus than

previously described

models. Provides the

first method for eval-

uation of tail and mid

piece.

2020 Ilhan et al. Fully automated

analyses of sperm

morphology by a

smartphone-based

system and intro-

duce a new dataset.

Sperm morphology 200 retrospective

images of stained

sperm cells from 17

subjects (SMIDS

dataset). Sperm cells

were manually classi-

fied as normal or

abnormal.

Deep learning

(CNN) and tradi-

tional ML (Support

Vector Machine,

Decision Trees, K-

Nearest

Neighbours)

The most precise

model was able to

predict normal or

abnormal sperm

with an accuracy of

87%.

2021 Abbasi et al. Improve AI models

for classification of

the sperm head,

vacuoles, and acro-

some as normal or

abnormal.

Sperm morphology 1,540 retrospective

images from the

MHSMA dataset.

Deep learning

(CNN)

Both AI models

were able to predict

sperm head charac-

teristics more accu-

rately than models

previously described

in other studies.

2021 Valiu�skaite et al. Propose an AI

method that can pre-

dict if a semen sam-

ple is suitable for

artificial insemination

procedure based on

videos of semen

samples.

Sperm motility 85 retrospective

videos from the

VISEM dataset.

Deep learning

(CNN)

The AI model

detected sperm

heads in the videos

with an accuracy of

91.8%, and the

Pearson correlation

between manually

assessed motility and

predicted sperm head

motility was 0.969.

AI, Artificial intelligence; CNN, Convolutional neural network; CASA, Computer-assisted semen analysis.

Artificial intelligence in the fertility clinic 2437
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AI in prediction of outcome
before treatment

In several publications, AI was used to build models that predict the

possibility of a successful treatment based on a patient’s medical re-

cord. The result may be of value for patient counselling about the po-

tential results of the treatment. Goyal et al. (2020) used the dataset

provided by Human Fertilisation and Embryology Authority (HFEA)

which included 30 different features such as age, number of previous

ART cycles, number of previous pregnancies, number of inseminated

oocytes, number of embryos transferred, and diagnosis for a total of

140 000 patients. Several ML techniques were evaluated to predict

live-birth occurrence. They concluded that both male and female traits

and living conditions were factors that influenced the outcome of

the treatment. A well-known ML technique called extreme gradient

boosting (XGBoost) has been used to predict live birth from fea-

tures such as age, anti-Mullerian hormone, BMI and patient anam-

nesis (Qiu et al., 2019). Similarly, an ANN was trained to predict

live birth using a collection of features such as the age of the fe-

male, total dose of gonadotrophins administered, endometrial thick-

ness, and the number of top-quality embryos (Vogiatzi et al., 2019).

AI in analysis of sperm

Most studies using an AI approach for semen analyses have been per-

formed for morphology assessments. The morphological classification

is usually performed on stained spermatozoa and implies both distin-

guishing abnormal from normal spermatozoa as well as identifying vari-

ous defects of the sperm cell (WHO, 2010). Some of the developed

AI models have been trained only to predict the morphology of sperm

heads (Chang et al., 2014; Chang et al.; 2017; Shaker et al., 2017;

Riordon et al., 2019), whereas other studies describe the recognition

of various parts of the whole sperm (Movahed et al., 2019; Ilhan et al.,

2020). These differences in the approaches make it difficult to com-

pare results and possible implications for clinical practice even if the

overall goal is similar. This is also fortified by the fact that the data

used is usually very limited, with only a small number of spermatozoa

or patients. Training and evaluating complex methods, for example,

DL, with a small-sized dataset most probably leads to an overfitted

model. An overfitted model is a model that does not generalise well

to unseen real-world cases although it works well on the training data.

For example, suppose that a model is trained on a dataset of embryo

images to predict pregnancy or not. If the model achieves far higher

prediction performance on the embryo images used for training than

on new and unseen images, the model is overfitted to the training

data.

Annotation of the dataset/sperm images must be done manually

and with high accuracy to obtain well-performing models. For recog-

nising and interpreting images of spermatozoa at the pixel level, seg-

mentation is the common approach, in which the spermatozoon is

divided into parts, each consisting of a set of pixels. Some studies

demonstrate high classification accuracy for morphological characteris-

tics, and most of the studies have both trained and validated the mod-

els on freely available datasets, which makes them easier to compare

(HuSHeM in Shaker et al. (2017), SCIAN in Chang et al. (2017), and a

smaller dataset of 264 spermatozoa in Chang et al. (2014)).

Furthermore, the model performance is compared with existing AI

models, and even though this is common practice in the field of AI, it

reveals little knowledge about the clinical usability of the model.

Regarding sperm morphology, as far as we know, there are no studies

comparing the performance of the models with manual assessment

according to the WHO guidelines or in relation to fertility outcomes.

For prediction of sperm motility, only one study compared AI-based

sperm motility classification against sperm motility that was manually

assessed following WHO guidelines (Hicks et al., 2019), while others

were mainly focused on comparing various models or exploring the

sperm kinematics (Goodson et al., 2017; Valiu�skait _e et al., 2020).

Studies related to motility and/or morphology also come with the

challenge of small datasets, and for both of them, the evaluation pro-

cedures are often not clear. Cross validation is sometimes used to

compensate for small datasets (Goodson et al., 2017; Shaker et al.,

2017). However, even though cross validation is acceptable for testing

model performance and comparing it to other models on the same

dataset, it does not test the generalisability of the results. In a clinical

setting, an independent test set evaluation should be performed, opti-

mally across different clinics (Abbasi et al., 2021).

Automatic systems for diagnostic purposes have been developed.

One such system based on an automatic segmentation step and a clas-

sification of normal/abnormal spermatozoa has recently been de-

scribed (Ilhan et al., 2020). The authors reported an accuracy of 87%.

However, the method was just compared with other ML methods and

not evaluated for its clinical value. In addition, accuracy alone is not a

sufficient metric to determine the possible clinical performance of a

method, especially if only a small dataset is used. Another automatic

system for analysis of sperm concentration, morphology and motility

used AI optical microscopic technology, for which the performance

was compared with manual assessment (Agarwal et al., 2019, 2021).

Nonetheless, the morphology values did not correlate with the manual

morphology results, and unfortunately, there are no details provided

on the construction and annotation of the dataset.

Parameters that are not part of standard semen analysis have also

been used in AI models. For example, sperm intracellular pH was

shown to be a stable marker for fertilisation outcome (Gunderson

et al., 2021), and sperm DNA integrity could be predicted from bright-

field sperm images at a single cell level through supervised training

(McCallum et al., 2019). These studies show how AI can be used to

automate sperm sorting and selection tasks. However, big datasets

from multicentre cohorts are needed to evaluate whether the results

are generalisable before these AI models can be used in the clinic as

well as for research related purposes. In addition to the conventional

semen variables, image features may detect sperm characteristics that

are too complex to be recognised by humans, for example, motility

patterns or morphological shapes. Nonetheless, from a diagnostic per-

spective, the clinical value of novel traits must be investigated in epide-

miological studies.

The selection of spermatozoa for ICSI is based on a cursory assess-

ment of motility and morphology in real-time, which is especially a

challenge for morphology evaluation. The procedure has a potential

for improvement using AI to obtain a more objective selection based

on the simultaneous monitoring of morphology and motility patterns.

Attempts have been made to develop DL models for morphological

assessment based on images of unstained spermatozoa (Javadi and

Mirroshandel, 2019; Abbasi et al., 2021). Both algorithms can analyse

2438 Riegler et al.
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fresh human sperm in real-time with a magnification between 400�

and 600�.

The AI methods used in sperm related studies are mostly based on

simple algorithms that are standard implementation in most ML frame-

works (Table II). The development of more domain-specific methods

and models related to ART will in the long run lead to better results

compared to using out-of-the-box methods from existing generic

frameworks.

Pitfalls

The AI algorithms are only as good as the data they are based on.

There may also be limitations regarding generalisability due to difficul-

ties with the standardisation of the ML methods. Variation in patient

demographics, clinical and laboratory practices may cause data bias.

When an AI model is based on training in one clinic, the AI model

should be validated in independent cohorts (Tran et al., 2019;

Bormann et al., 2020b). Furthermore, the models should not be lim-

ited to strict inclusion criteria, and optimally the datasets should con-

tain data from different clinics where testing data should be from a

different site than the training and validation data (Alegre et al., 2021;

Bori et al., 2020).

Another important issue is that patient data and treatment informa-

tion are not easily obtained for research due to data privacy and ethi-

cal considerations. This naturally limits the amount of patient related

data to be used for training the AI model. DL methods, which are es-

pecially suited for image and video classification, require a large

amount of diverse data to be generalisable. Another weakness for

some studies is that the data used for training are not connected to

any treatment outcome, leading to overly complex models that might

only detect irrelevant correlations (Dirvanauskas et al., 2019;

Kanakasabapathy et al., 2019; Khosravi et al., 2019; Raudonis et al.,

2019; Bormann et al., 2020a; Bormann et al., 2020b; Fukunaga et al.,

2020; Rad et al., 2020; Zhao et al., 2021; Alegre et al., 2021). This can

raise concerns like, for example, whether the prediction is related to

the embryo implantation potential. Moreover, most articles resort to a

positive heartbeat at ultrasound control or even a positive hCG test

as their outcome, but the most important outcome in ART is the birth

of a living, healthy child (Vogiatzi et al., 2019; Bori et al., 2021).

AI models are usually evaluated using different metrics such as accu-

racy, precision and sensitivity. Often only a small subset or even just a

single metric is used to decide if the model performs well. This is not

sufficient, and to make a proper estimation about the performance, a

set of metrics needs to be considered. It might even be necessary to

develop task specific performance measurements.

The future symbiosis between
AI and ART

AI methods may be a supporting tool in predicting the patient’s

individual chance of achieving a healthy child based on available patient

data. Adjustments of treatment and prediction of risk and possibilities

for complications during pregnancy may be other tasks guided by AI.

In ART, AI models may assist in selecting methods, selecting the em-

bryo for transfer, and selecting the spermatozoon for ICSI.

As far as we know, no published studies have performed AI-guided

sperm selection for ICSI. Detailed real-time assessment of both motil-

ity and morphology simultaneously is a challenge in the present rou-

tine. By analysing video recordings of sperm selections by ML methods

that consider both the spatial and temporal domains, it may be possi-

ble to detect patterns or unknown characteristics that can be related

to ICSI outcomes. Similarly, until-now unrecognised features of impor-

tance for embryo quality might also be detected by analysing images

and videos of embryos.

At present, most of the publications are of a retrospective nature

and there is a lack of prospective studies. However, there are some

studies that are using retrospective data to perform a prospective

study (Bormann et al., 2020b; Huang et al., 2021). The latter should

preferably be performed as randomised controlled trials, in which the

performance of the AI model included in one arm is compared to

decisions routinely performed at a fertility clinic in the other arm, and

the outcome is defined as live births. The studies should optimally be

designed to include just single embryo transfers to exclude the uncer-

tainty arising when two (or more) embryos are transferred and only

one child is born. Most studies using AI for embryo assessment or se-

lection rely on manually extracted features from embryo images or

videos. However, over the last couple of years, there has been a rapid

increase in the use of DL techniques where features are automatically

learned. There are also a few studies using image segmentation techni-

ques to improve automatic embryo assessment (Rad et al., 2020) or

to streamline manual assessment (Zhao et al., 2021). The impact of

these methods in clinical practice is however limited and standardisa-

tion, explainable methods and transparency are keys to improve it.

Standardisation is essential for the development of an applicable and

reliable AI model. It requires close interdisciplinary collaboration from

the planning of the initial study to the clinical evaluation. In particular,

for the successful implementation of AI in the field of ART, a close col-

laboration between computer science, clinical experience and biologi-

cal knowledge, which also agree on a common standard, is crucial.

Most algorithms used in all the aforementioned articles, especially

DL-based, are black boxes. Ongoing research tries to increase the un-

derstanding of these black boxes (Holzinger et al., 2019; Arrieta et al.,

2020). In ART, methods for better understanding of black boxes are

still in their infancy, focusing on simple visualisation methods (Liu et al.,

2020; Abbasi et al., 2021). However, the whole pipeline of an AI sys-

tem should be transparent (Saito and Rehmsmeier, 2015), including

the evaluation method and metrics that need to be described clearly

(as in: Javadi and Mirroshandel, 2019; Bori et al., 2020). Increased

transparency of AI in ART will also be beneficial for discussions of legal

and ethical implications across countries, which often have different

regulations.

Furthermore, we need a common way of benchmarking and com-

paring different systems. In computer science, this is often done using

open benchmarking datasets collected and curated by the scientific

community. If the hardware changes, like data collected at higher reso-

lutions, the systems will have to be evaluated on the data collected

from these new devices. This means we need these community-wide

benchmarking datasets to be continuously tested before, during and af-

ter clinical trials to verify the performance of AI models. This is not

just important for research but also for commercial companies in the

Artificial intelligence in the fertility clinic 2439
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field. Systems such as iDASCORE, KIDScore, Eeva and LensHooke

should follow the same requirements and be transparent and open

about data, methods and evaluation.

The datasets also need to be continuously updated following tech-

nological advances and new findings. There are a few open datasets

for sperm and embryo (Shaker et al., 2017; Saeedi et al., 2017;

Haugen et al., 2019; Javadi and Mirroshandel, 2019; Ilhan et al., 2020).

For sperm, datasets such as VISEM (Haugen et al., 2019) and

HuSHeM (Shaker et al., 2017) are commonly used for the evaluation

of sperm characteristics. For embryos, even fewer public datasets ex-

ist, and the data published by Saeedi et al. (2017) has been used for

blastocyst evaluation. Ideally, one publicly available dataset should be

used for developing algorithms and a hidden test dataset can be tested

on hardware provided by, for example, the European Society of

Human Reproduction and Embryology or the American Society for

Reproductive Medicine. This would ensure a common standard for

training and testing to provide reproducible and comparable results

necessary to make AI in ART clinically relevant.

Conclusion

Several studies have applied ML in ART, some of them focusing on

clinical relevance, while others concern AI methodological aspects.

The limitations are often small datasets and the use of AI algorithms

not specifically designed for the fertility clinic. Large open datasets and

methods specifically developed and tailored for use in context with

ART could lead to better results and understanding.

For AI to significantly impact ART, the model must be developed in

the context of clinical practice. Critical steps are proper evaluation and

testing of AI systems in relation to outcomes and regulations, a better

understanding of the technical aspects, and determination of the per-

formance of AI models regarding practical value in the clinic. In addi-

tion, it is important to standardise the use of AI in ART to enable

more transparent, comparable, and reproducible results.

To succeed with implementing AI as a valuable tool in the fertility

clinic, a strong interdisciplinary collaboration is required between

researchers in ART and AI as well as the clinical staff. In addition,

there is a need for large-scale randomised controlled trials where sev-

eral clinics are involved in testing the external validity of the algorithms

before defining AI systems that are sufficiently robust for safe clinical

implementation.
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